Laser Institute of America

Laser Safety Guide

Eleventh Edition 2007

Prepared by LIA Laser Safety Committee

Edited by Wesley Marshall & David Sliney

Laser Institute of America

Orlando

Copyright 2007 by Laser Institute of America

Published by Laser Institute of America 13501 Ingenuity Drive, Suite 128, Orlando, FL 32826 www.laserinstitute.org

First Printing June, 2007 ISBN 13: #978-0-912035-06-2 & ISBN 10: #0-912035-06-4

All rights reserved. No part of this publication may be reproduced, stored in any retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Laser Institute of America.

Printed in the United States of America 234567890

LIA SAFETY COMMITTEE

Through this committee, LIA provides its membership with up-to-date information regarding national laser safety guidelines through publications, conferences, and educational courses. LIA would like to thank the following individuals for their participation in the first edition as well as subsequent updates.

David H. Sliney, Chair

Mario Aullet, American Allsafe Craig Bakazonis, Shands Hospital Ken Barat, Lawrence Berkeley Laboratory Sidney Charschan, Charschan & Associates David Edmunds, Xerox Corporation James Franks, US Army Environmental Hygiene Agency R. Timothy Hitchcock, IBM Corp. **Richard Hughes**, High-Rez Diagnostics Rocco Lobraico, Wenske Laser Center Wes Marshall, US Army Environmental Hygiene Agency Robert Miniutti, Gentex Optics Fred Seeber, Camden County College Dewey Sprague, University of California - Berkeley James Smith, IBM Corp. Robert Weiner, Consultant Myron Wolbarsht, Duke University

LIA gratefully acknowledges the use of material in this guide that originally appeared in the ACGIH Guide for Lasers (Ref. 2).

Table of Contents

I.	Introduction	1
II.	Laser Hazards	1
III.	Eye Hazards	3
IV.	Skin Hazards	6
V.	Non-beam Hazards from High Power Lasers	6
VI.	Laser Safety Standards and Hazard Classifications	7
VII.	Viewing Laser Radiation	10
VIII.	Safety Procedures for Each Laser Classification	15
IX.	Controls for Outdoor Lasers including Surveying, Alignment, & Leveling Lasers	22
Х.	Eye Protection	23
XI.	Laser Safety Officer	26
XII.	Control of Non-beam Hazards	34
XIII.	Laser Calculations and Measurements	40
XIV.	Summary	41
XV.	Appendix	44
XVI.	List of Figures and Tables	49

I. Introduction

The increasingly widespread use of lasers requires more people to become familiar with the potential hazards associated with the misuse of this valuable product of modern science. Lasers are used in many applications, including material processing, construction, medicine, communications, energy production, and national defense. Of importance from a safety consideration, however, is the introduction of laser devices into more consumeroriented retail products, such as the laser scanning devices, office copy and printing machines, and audio/visual and computer CD systems. Most devices in these markets emit relatively low power levels and consequently, since their beams are enclosed, their use poses no laser hazard.

II. Laser Hazards

The basic hazards from laser equipment can be categorized as follows:

A. Laser Radiation Hazards

Current lasers emit beams of optical radiation. Optical radiation (ultraviolet, visible, and infrared) is termed <u>non-ionizing</u> radiation to distinguish it from <u>ionizing</u> radiation such as X-rays and gamma rays, which are known to cause different biological effects. X-ray lasers are under development, but are limited to a few special laboratories.

1. Eye hazards

Corneal or retinal burns (or both), depending upon laser wavelength, are possible from acute exposure. Corneal or lenticular opacities (cataracts), or retinal injury may be possible

Laser Safety Guide

Wavelength (nm)	Laser Type	Wavelength (µm)	Pulse Duration (s)	Class 1 (J)	Class 3b (J)	Class 4 (J)
Ultraviolet				```		
180 to 400	Excimer (ArF)	0.193	20×10^{-9}	$\leq 2.4 \times 10^{-5}$		
	Excimer (KrF)	0.248	20×10^{-9}	$\leq 2.4 \times 10^{-5}$		
	Neodymium: YAG	0.266	20×10^{-9}	$\leq 2.4 \times 10^{-5}$		
	Q-switched (Quadrupled)			>	> Class 1 but ≤ 0.125	> 0.125
	Excimer (XeCl)	0.308	20×10^{-9}	$\leq 5.3 \times 10^{-5}$	≤ 0.125	
	Nitrogen	0.337	20×10^{-9} 20×10^{-9}	$\leq 5.3 \times 10^{-5}$ $\leq 5.3 \times 10^{-5}$		
	Excimer (XeF)	0.351	20×10^{-9} 20×10^{-9}	$\leq 5.3 \times 10^{-5}$		
			20 × 10	<u>⊐</u> 5.5 × 10 ∫		
Visible 0.400 to 0.700	Rhodamine 6G	0.450-0.650	1×10^{-6}	١		
0.400 10 0.700	(Dye Laser)	0.450-0.050	1 ~ 10			
	Copper Vapor	0.510, 0.578	2.5×10^{-9}			
	Neodymium: YAG	0.532	2.5×10^{-9} 20×10^{-9}	$\leq 1.9 \times 10^{-7}$		
	(Doubled) (Q- switched)				> Class 1 but ≤ 0.03	> 0.03
	Ruby (Q-switched)	0.6943	20×10^{-9}	(
	Ruby (Long Pulse)	0.6943	1×10^{-3}	$\leq 3.9 \times 10^{-6}$		
Near Infrared						
0.700 to 1.4	Ti: Sapphire	0.700-1.000	6×10^{-6}	$\leq 1.9 \times 10^{-7}$		
	**		010	,		
	Alexandrite	0.720-0.800	1×10^{-4}	$\leq 7.6 \times 10^{-7}$	> Class 1 but	> 0.033†
					≤ 0.033†*	
	Neodymium: YAG	1.064	20×10^{-9}	$\le 1.9 \times 10^{-6}$	>Class 1 but	> 0.125
	(Q-switched)		20 × 10	_ 1.) × 10	≤ 0.125	
		1.540				
Far Infrared $1.400 \text{ to } 10^3$	Erbium: Glass	1.540	10×10^{-9}	$\leq 7.9 \times 10^{-3}$		
1.400 to 10	Co: Magnesium- Fluoride	1.8-2.5	80×10^{-6}	$\leq 7.9 \times 10^{-4}$		
	Holmium	2.100	250 10-6	$\leq 7.9 \times 10^{-4}$	> Class 1 but	> 0.125
	Hydrogen Fluoride	2.600-3.000	250×10^{-6}	$\leq 1.9 \times 10$ $\leq 1.1 \times 10^{-4}$	≤ 0.125	
	Erbium	2.940	0.4×10^{-6}	$\leq 1.1 \times 10$ $\leq 5.6 \times 10^{-4}$	20.125	
	Carbon Dioxide	10.6	250×10^{-6} 100×10^{-9}	$\leq 5.6 \times 10$ $\leq 7.9 \times 10^{-5}$		
	Carbon Dioxide	10.6	100×10^{-3} 1 × 10 ⁻³	$\leq 7.9 \times 10$ $\leq 7.9 \times 10^{-4}$		
			1 × 10	_ /.) × 10 J		

Table IV* Typical Laser Classification - Single-Pulsed Point-Source Lasers

* Copied with permission from ANSI Z136.1-2007, Table C2.

† Class 3B AEL varies from 0.033 to 0.480 J corresponding to wavelengths that vary between 720 and 800 nm.

Table V
States with some Form of Current Laser Safety Obligation.

State	Dept. or Agency	Title	
Alaska	Environmental Conversation	Title 18, Art 7	
Arizona	Radiation Reg. Agency	Title 12, Art 14	
Arkansas	Div. Radiation Control and	Act 460	
	Emergency Management		
Florida	Dept. Health/ Rehab Services	Non-ionizing Ch: 10D-89	
Georgia	Dept. of Public Health	Ch: 290-5-27	
Illinois	Dept. of Nuclear Energy	Title 32-II-315	
		(proposed)	
Massachusetts	Dept. of Public Health	105 CMR 121	
New York	Dept. of Labor	Code Rule 50	
Texas	Dept. of Health	Title 25, Ch. 289	
Washington	Labor and Industry	Ch: 296-62-WAC	

XVI. List of Figures and Tables

Figures

Figure 1	Schematic of the human eye and its focusing effect	3
Figure 2	Optical absorption sites of laser radiation	5
Figure 3	Intrabeam viewing of direct (primary beam)	.14
Figure 4	Intrabeam viewing of flat surface, specularly reflected (secondary) beam	.14
Figure 5	Intrabeam viewing of curved surface, specularly reflected (secondary) beam	.14
Figure 6	Extended source viewing of normally diffuse reflection	.14
Figure 7	Sample warning sign for Class 2, Class 2M and certain Class 3R lasers	
Figure 8	Sample warning sign for certain Class 3R, Class 3B and Class 4 lasers	.17
Figure 9	Sample IEC warning logo	.18
Figure 10	Sample laser temporary controlled area sign	.18
Figure 11	Filter lens divergence	.24

Tables

Table 1	Visible and Near-IR MPEs Values for Direct Ocular Exposure	.11
Table 2a	Some Examples of Point Source Ocular Exposure Limits for Selected CW Lasers	.12
Table 2b	Examples of Skin Exposure Limits for Selected CW Lasers	.13
Table 3	Simplified Method for Selecting Laser Eye Protection	.25
Table 4	Duties of the Laser Safety Officer	.27

The Laser Institute of America

Table 5	Engineering Control Measures for Each of the Laser Classifications	29
Table 6	Administrative and Procedural Control Measures for Each of the Laser Classifications	30

XV. Appendix

Table Ia	Point-Source Maximum Permissible Exposure Limits that are applicable to many common CW lasers for eye and skin exposure to laser radiation
Table Ib	Point-Source Maximum Permissible Exposure Limits that are applicable to many common pulsed lasers for eye and skin exposure to laser radiation
Table II	Useful Radiometric Terms and Units45
Table III	Typical Laser Classifications for Continuous-Wave Lasers
Table IV	Typical Laser Classifications for Pulsed Lasers47
Table V	States with some Form of Laser Safety Obligation48